
Experiments with a Lossless JPEG Codec September 2, 1994 1

Experiments with a Lossless JPEG Codec

Kongji Huang

Cornell University

kongji@cs.cornell.edu

Thesis Advisor: Brian Smith

1.0 Introduction

The ISO JPEG Still Image Compression Standard is popularly known for its DCT-based

compression technique, but its non-DCT based lossless mode of operation is less well

known. Lossless JPEG uses a form of discrete pulse code modulation (DPCM) [3]. That

is, a linear combination of a pixel’s left, upper and upper left neighbors is used to predict

the pixel’s value, and the difference between the pixel and its predictor is coded through

either Huffman or Arithmetic coding. Lossless JPEG defines seven linear combination

known as prediction selection values (PSV).

Although the lossless JPEG standard has been available for several years, few experimen-

tal studies using the technique’s performance have been reported in the literature. This

paper describes an implementation of lossless JPEG and the results of experiments with

the codec. In particular, we show that some classes of PSVs, namely two dimensional

PSVs (using at least two neighboring pixels in predictor calculation) result in better com-

pression for most “real world” images.

Experiments with a Lossless JPEG Codec September 2, 1994 2

The rest of this paper is organized as follows. The lossless JPEG encoding and decoding

algorithms are briefly reviewed in section 2. Our implementation is described in section 3.

Besides the Huffman encoding and optimal Huffman encoding algorithm, we have intro-

duced and implemented an effective automatic PSV selection algorithm which guarantees

the best possible compression ratio for lossless JPEG on a given image.

Section 4 compares the speed of our codec with other popular lossless compression pro-

grams and demonstrates that our codec runs at comparable speeds. In section 4 we also

show the breakdown of CPU time used by each compression phase. Section 5 compares

lossless JPEG’s compression ratio with other lossless compression programs, and studies

the effect of different PSVs on image compression ratio.

2.0 Lossless JPEG Algorithm

This section describes the steps of the lossless JPEG process and gives three algorithms

for implementing this process, one for decoding and two for encoding. A procedure for

automatically selecting the PSV is also described.

2.1 The lossless JPEG encoding process

For simplicity of discussion, consider a source image as a two-dimensional array of sam-

ples. Each sample is a pixel containing either three components represent the red, green,

and blue levels (rgb) for a color image or single component for a grayscale image. In loss-

less JPEG, each component specified as an integer with 2 to 16 bits of precision.

Experiments with a Lossless JPEG Codec September 2, 1994 3

A point transformation parameter, Pt, can be used to reduce the source image precision. If

Pt is non zero, each input sample is shifted right by Pt bits. The result is input to encoder

as new samples.

The JPEG standard defines eight PSVs, given in table 1. PSV 0, which reserved for differ-

ential coding in the hierarchical progressive mode, is not used in our lossless JPEG codec.

For each pixel, Px,y, a linear combination of its left (Px,y-1), upper (Px-1,y), and upper left

(Px-1,y-1) neighboring pixels is used to calculate a predictor of Px,y. PSV 1, 2 and 3 are one

dimensional predictors (i.e., they use only one neighbor), and 4, 5, 6 and 7 are two dimen-

sional (i.e., they use two or more neighbors).

The first row and column of the image are treated specially. PSV 1 is used for the first row

of samples and PSV 2 is used for the first column. For the pixel in the upper left corner of

the image, the predictor 2P-Pt-1 is used, where P is the sample precision bits.

The derived predictor is component-wise subtracted from the pixel value and the differ-

ence is encoded by either a Huffman or an Arithmetic entropy coder. Because Arithmetic

entropy coder is patented, we have implemented only the Huffman entropy coder.

PSVs Predictor

0 no prediction (differential coding)

1 Px,y-1

2 Px-1,y

3 Px-1,y-1

4 Px,y-1+Px-1,y-Px-1,y-1

5 Px,y-1+(Px-1,y-Px-1,y-1)/2

6 Px-1,y+(Px,y-1-Px-1,y-1)/2

7 (Px,y-1+Px-1,y)/2

TABLE 1. Predictors for lossless JPEG

Experiments with a Lossless JPEG Codec September 2, 1994 4

The Huffman entropy model partitions the differences into 16 difference categories,

denoted as SSSS, where SSSS is a integer from 0 to 15. Each of the difference category is

assigned a Huffman code using either a default Huffman table defined in [1] or one cus-

tomized to the image. The entropy model takes advantage of the small set of difference

category symbols to minimize the overhead of specifying and storing the Huffman table.

The difference category table is listed below.

 SSSS Difference values
 0 0
 1 -1,1
 2 -3,-2,2,3
 3 -7..-4,4..7
 4 -15..-8,8..15
 5 -31..-16,16..31
 6 -63..-32,32..63
 7 -127..-64,64..127
 8 -255..-128,128..255
 9 -511..-256,256..511
 10 -1023..-512,512..1023
 11 -2047..-1024,1024..2047
 12 -4095..-2048,2048..4095
 13 -8191..-4096,4096..8191
 14 -16383..-8192,8192..16383
 15 -32767..-16384,16384..32767
 16 32768

To fully specify a difference, SSSS additional bits are appended to the Huffman coded dif-

ference category to identify the sign and the magnitude of the difference. The rule for the

additional bits is specified as follows. If the difference is positive, append the SSSS low

order bits of the difference; if the difference is negative, subtract one from the difference

and append the SSSS low-order bits of the resulting value. The additional bits are

appended most significant bit first.

Experiments with a Lossless JPEG Codec September 2, 1994 5

The following example illustrates the encoding process. The source image is a 2x3 gray-

scale image. We use PSV 7 () as predictor and an optimal Huffman table

to code the difference categories. Pt is set to zero.

To decode the above encoded bits steam, the Huffman code 101 is first extracted and Huff-

man decoded to get the category symbol 4. Then 4 additional bits, 0111, are extracted

from the bitstream. The leading 0 means the difference value is a negative number, so the

magnitude of the difference value is 1 plus binary 0111. Adding the reconstructed -8 to its

predictor, 128, the original pixel value 120 is recovered. This inverse encoding process is

repeated until the bits stream is decoded.

2.2 Lossless Encoding

The procedure LEncode, shown in Figure 1, implements the lossless encoding process

described in previous section, using a default Huffman table given in K.3.1 of [1] to

encode each category symbol.

Px y 1–, Px 1– y,+() 2⁄

source image

120 100 100

80 90 100

diff = pixel -
predictor

-8 -20 0

-40 0 5

difference category and additional bits

4 0111 5 01011 0

6 010111 0 3 101

output bit stream (spaces are not part of bit stream)

101 0111 110 01011 0 111 010111 0 100 101

Experiments with a Lossless JPEG Codec September 2, 1994 6

FIGURE 1. LEncode - The lossless JPEG encoding algorithm

LEncode is passed a target image and one of the seven PSVs. It first outputs the file header

information. Then, for each pixel, image[x,y], in the target image, a predictor is calculated

by Predictor() using the PSV and neighboring pixels, image[x-1,y], image[x,y-1] and

image[x-1,y-1]. The predictor is subtracted from image[x,y], and the difference, D, is

encoded as a pair of values: a difference category symbol and additional bits. The differ-

ence category symbol is output at line 4 using EmitBits() and the default Huffman table

stored in the arrays Hufco and Hufsi. The additional bits are output at line 6.

2.3 Optimal Lossless Encoder

The procedure OLencode, shown in Figure 2, is similar to LEncode with one difference:

OLencode builds and uses a customized Huffman table to encode the difference catego-

ries. The generation of the customized Huffman table is frequency of each difference cate-

gory. Thus, the inner loop of the LEncode is performed twice in OLencode: once to count

the number of difference symbols (in Lines 1-4) and once to encode the image (in Lines 7-

12).

LEncode(PSV,image)

1.Output File Header and Scan header
2.for each pixel do
3. D=image[x,y]-Predict(PSV,image[x-1,y],image[x,y-1],image[x-1,y-1]
4. EmitBits(Hufco[D],Hufsi[D])
5. if (D<0) then D=D-1
6. if (D!=0) then EmitBits(D, NumOfAddBits(D))
7.od

Experiments with a Lossless JPEG Codec September 2, 1994 7

FIGURE 2. OLEncode - The optimal lossless JPEG encoding algorithm

In both lossless encoding and optimal lossless encoding, the compression ratio varies sig-

nificantly depending on choice of PSVs, and no single PSV performs best on all images.

Thus our encoding program uses an automatic PSV selection procedure, described next, to

pick the best PSV for a specific image.

2.4 Automatic PSV selection

The automatic PSV selection procedure can be incorporated in both LEncode and OLen-

code. The algorithm is shown in Figure 3. For each PSV in a PSV set, a frequency table is

built to count the number of times each difference category appears. Then, the total bits of

category symbols and additional bits are calculated using the frequency table and a Huff-

man table. The PSV which generates the least total number of bits is selected.

OLEncode(PSV,image)

1.for each pixel do
2. D=image[x,y]-Predict(PSV,image[x-1,y],image[x,y-1],image[x-1,y-1])
3. Count(D,freqTbl)
4.od
5.BuildHuffmanTable(HuffTbl,freqTbl)
6.Output File Header and Scan header
7.for each pixel do
8. D=image[x,y]-Predict(PSV,image[x-1,y],image[x,y-1],image[x-1,y-1]
9. EmitBits(Hufco[D],Hufsi[D])
10. if (D<0) then D=D-1
11. if (D!=0) then EmitBits(D,NumOfAddBits(D))
12.od

Experiments with a Lossless JPEG Codec September 2, 1994 8

FIGURE 3. PSVSelection - automatic PSV selection procedure

2.5 Lossless Decoder

The procedure LDecode, shown in Figure 4, implements the decoding algorithm. LDe-

code reads the header information from the input file, including 1 to 4 Huffman tables. It

then extracts the encoded difference category symbol from the bits stream, decodes the

symbol using the corresponding Huffman table, reconstructs a difference value, calculates

predictor using the PSV (stored in the scan header) and the previously decoded neighbor-

ing pixels, and adds the predictor to the difference value to reconstruct the pixel. If the

point transformation parameter, Pt, (also stored in the header) is non zero, each pixel value

is shifted left Pt bits before being output.

FIGURE 4. LDecode - The lossless decoding algorithm

PSVSelection(PSVSet,image)

1.for each PSV in PSVSet do
2. for each pixel do
3. D=image[x,y]-Predict(PSV,image[x-1,y],image[x,y-1],image[x-1,y-1])
4. Count(D,freqTable[PSV])
5. od
6. curTotalBits=TotalBits(freqTable[PSV],huffTbl)
7. if (curTotalBits<curLeastTotalBits) then
8. curLeastTotalBits=curTotalBits
9. curBestPSV=PSV
10. fi
11.od

LDecode(PSV,bits)

1.while (bitstream != NULL) do
2. DC=Next difference category symbol
3. nbits=Decode(DC, huffTbl)
4. D=Extract(nbits)
5. P=Predict(PSV,image[x-1,y],image[x,y-1],image[x-1,y-1])
6. image[x,y]=D+P
7.od

Experiments with a Lossless JPEG Codec September 2, 1994 9

3.0 Implementation

This section briefly describes our implementation of the lossless JPEG algorithms

described in the previous section.

The encoder implements lossless encoding on portable pixmap (PPM) images [4]. Com-

mand line options allow the user

1) to direct the encoder to select the best PSV from a user specified set of PSVs,

2) to supply a point transform value,

3) to select Huffman table optimization,

4) to output a variety of statistics.

The PSVSelection procedure selects the best PSV among the set of PSVs supplied by the

user. If this set is not supplied, the PSVSelection selects the best among all seven PSVs.

The encoder contains 3776 lines of C code, including comments, and memory usage is

approximately equal to the size of the source image.

The encoder has been highly optimized. Profiling revealed that most of time was spent in

the frequency counting step in 2-5 of figure 3. To make this critical step fast, we pushed all

special case checking, such as first sample, first row and first column, out of the frequency

counting loop, and the entropy encoding loop. We also unrolled the loop that derives dif-

ferences between a pixel value and its predictor and updates the frequency tables for all

PSVs, eliminated all function calls from the inner loops, and used lookup tables to speed

Experiments with a Lossless JPEG Codec September 2, 1994 10

up the calculation of additional bits size. These optimizations increased the speed of the

encoder by 266%.

We tried caching the difference values calculated in PSVSelection procedure. The cached

values were then used in the Huffman encoding phase. But the extra buffering required for

caching tripled the memory usage, causing page faults and introducing extra overhead in

the frequency counting loop. The result was that this version of the encoder ran almost

three times slower than the current version.

The decoder decompresses a lossless JPEG compressed image from either standard input

or a file. The decoded image is output to either standard output or a file in PPM format.

The decoder contains 2412 lines of C codes, including comments. Since the decoder buff-

ers only two rows of image for predictor calculation, its memory usage is negligible.

4.0 Encoding and decoding speed

The section reports the results of designed experiments to characterize the speed of the

lossless JPEG encoding and decoding programs. The first part compares the codec’s speed

with other popular lossless compression programs. The second part studies codec’s speed

as a function of the number of pixels to compress.

4.1 Comparison with other lossless compression programs

The goal of this experiment is to compare the lossless JPEG encoding and decoding speed

with other popular lossless compression programs: gzip (using Lempel-Ziv and optimal

Lempel-Ziv algorithm [2]), compress (using LZW algorithm [2]), and pack (using Huff-

Experiments with a Lossless JPEG Codec September 2, 1994 11

man coding [2]). All programs in this experiment are compiled with “gcc -O2”, and are

timed on a SUN SPARC 10 with 32MB of memory using the Unix time program. Both

lossless JPEG encoding (LJ encoding) and optimal lossless JPEG encoding (OLJ encod-

ing) use the PSVSelection procedure to select the best PSV among all seven PSVs.

Twelve 640x480 images of various scenes were used in the experiment. Every image was

compressed and decompressed ten times by each program. This insures that our experi-

ment covers various images and the experiment results are not greatly affected measure-

ment noise. The means of CPU time (and their standard deviations) are listed in Table 2.

The above data shows that the speed of both the LJ encoder and the OLJ encoder is close

to gzip, despite the incorporation of the computationally intensive automatic PSV selec-

tion procedure. The lossless JPEG decoder is one to four times slower than other decom-

press programs.

4.2 Breakdown of CPU time

The encoder spends about 58% of CPU time on frequency counting, 17% on Huffman

coding (including emitting bitstream), 8% on image reading, and 7% on predictor calcula-

tion. The decoder spends about 31% of CPU time on Huffman decoding of the category

encoding program CPU time (sec) decoding program CPU time (sec)

LJ encoder 5.2 () LJ decoder 1.9 ()

OLJ encoder 5.5 () LJ decoder 1.9 ()

compress 2.0 () uncompress 1.1 ()

gzip 4.9 () gunzip 0.5 ()

gzip -9 10.1 () gunzip 0.5 ()

pack 0.8 () unpack 1.8 ()

TABLE 2. Speed comparison of lossless coding programs

0.4� 0.3�

0.4� 0.3�

0.6� 0.3�

1.5� 0.1�

5.8� 0.1�

0.1� 0.4�

Experiments with a Lossless JPEG Codec September 2, 1994 12

symbols, 17% on predictor calculation, 15% on writing pixels, 13% on reading bitstream,

and the rest CPU time on reading and writing header information, initialization, and com-

mand line argument parsing.

5.0 Compression ratio and compressed image data distribution

The compression ratio for lossless JPEG, defined as (original image size)/(compressed

image size), is typically between 1.4:1 and 3:1. For “busy” scenes with many large

changes in local pixel values, the compression ratio is around 1.5:1, but for scenes with

smooth changes, the compression ratio can reach as high as 3:1.

5.1 Comparison with other lossless compression programs

We compared the compression ratio of Lossless JPEG with three popular compression

programs, namely gzip, compress and pack. Four representative images were used in this

experiment: a photo of human face (“Lena”), a sports photo (“football”), a flower scene

(“flowers”), and a picture of an airplane (“F-18”). All images appear in appendix A. Table

3 shows the compression ratio obtained when each program was applied to the four

images.

compression program

compression ratio

Lena football F-18 flowers

lossless JPEG 1.45 1.54 2.29 1.26

optimal lossless JPEG 1.49 1.67 2.71 1.33

compress (LZW) 0.86 1.24 2.21 0.87

gzip (Lempel-Ziv) 1.08 1.36 3.10 1.05

gzip -9 (optimal Lempel-Ziv) 1.08 1.36 3.13 1.05

pack (Huffman coding) 1.02 1.12 1.19 1.00

TABLE 3. Comparison of compression ratio for selected images

Experiments with a Lossless JPEG Codec September 2, 1994 13

Both LJ and OLJ compress better than the other four programs for Lena, football and

flowers. Gzip and gzip -9 compresses somewhat better for F-18 because of the image’s

constant background. Note that OLJ compresses 3% to 18% better than LJ.

5.2 Effects of PSV

This section studies the effect of different PSVs on compression ratio. This first subsection

analyzes the compressed image data distribution and compression ratio in detail. The sec-

ond subsection studies the relationship between PSVs and compression ratio using a larger

set of images.

5.2.1 Compressed image data distribution and compression ratio for all PSV

Tables 4-7 show the compression ratio and bit allocation in the compressed bitstream for

each PSV when the image Lena, football, F-18 and flowers are compressed using OLen-

code. The table’s columns list the PSV used, the percentage of bits in the compressed

image used by category symbols, the percentage of bits used by the additional bits

(described in section 2.1), and the compression ratio.

The figure beside each table gives a graphical view of the data listed in the table. Each bar

corresponds to a PSV and has two parts, the lower bar for the category symbol size, and

the upper bar for the additional bits size. The graph height is the original image size.

Experiments with a Lossless JPEG Codec September 2, 1994 14

PSV
cat
sym%

add
bits%

comp
ratio

1 46% 53% 1.31

2 50% 50% 1.44

3 45% 55% 1.25

4 51% 48% 1.44

5 49% 50% 1.41

6 52% 48% 1.49

7 49% 50% 1.42

TABLE 4. Lena - effects of PSV

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7

D
at

a
Si

ze
 (

by
te

s)

PSV

additional bits
category symbol

PSV
cat
sym%

add
bits%

comp
ratio

1 50% 49% 1.63

2 46% 54% 1.30

3 44% 56% 1.27

4 51% 49% 1.59

5 52% 48% 1.67

6 49% 51% 1.46

7 49% 51% 1.47

TABLE 5. football - effects of PSV

additional bits
category symbol

0

200000

400000

600000

800000

1000000

1 2 3 4 5 6 7

D
at

a
Si

ze
 (

by
te

s)

PSV

PSV
cat
sym%

add
bits%

comp
ratio

1 65% 35% 2.40

2 62% 37% 2.06

3 59% 40% 1.88

4 67% 33% 2.71

5 66% 33% 2.59

6 64% 35% 2.34

7 64% 36% 2.24

TABLE 6. F-18 - effects of PSV

additional bits
category symbol

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7

D
at

a
Si

ze
 (

by
te

s)

PSV

Experiments with a Lossless JPEG Codec September 2, 1994 15

In the 125x125 image Lena, PSV 6 gives the best compression ratio (1.49), and PSV 3

gives the worst compression ratio (1.25). The bitstream consists of category symbols and

additional bits in roughly equal proportions. From the adjoining chart we see that the cate-

gory symbols size does not vary much among PSVs. The variation in additional bits is the

cause of the difference in compression ratio. This is because a good PSV accurately pre-

dicts a pixel’s value, generating small difference values, and therefore less additional bits.

The second test image is a 720x486 scene of football game. Table 5 shows that PSV 5

gives the best compression ratio (1.67), and PSV 3 gives the worst (1.27). As before, the

number of bits allocated to additional bits is much more variable than the number of bits

allocated to category symbols.

Image 3 is a 640x480 picture of U.S. Navy Blue Angel - F18. From table 6, PSV 4 gives

the best compression ratio (2.71) and, again, PSV 3 gives the worst (1.88). In this image,

the category symbols comprise 60% to 70% of the bitstream, the additional bits comprise

PSV
cat
sym%

add
bits%

comp
ratio

1 44% 56% 1.27

2 44% 56% 1.29

3 43% 57% 1.24

4 43% 57% 1.24

5 44% 56% 1.28

6 44% 56% 1.28

7 45% 55% 1.33

TABLE 7. flowers - effects of PSV

additional bits
category symbol

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 2 3 4 5 6 7

D
at

a
Si

ze
 (

by
te

s)

PSV

Experiments with a Lossless JPEG Codec September 2, 1994 16

30% to 40%. This picture contains a relative “simple” scene with large constant back-

ground, so almost all PSVs predict well and generate less additional bits.

Image 4 is a 640x480 colorful flower scene. Table 7 shows that PSV 7 gives the best com-

pression ratio (1.33) and PSV 3 and PSV 4 tie for the worst compression ratio (1.24). The

category symbol consists about 45% of the compressed image, the additional bits consists

about 55%.

These experiments reveal the following properties of lossless JPEG. First, the header

information consists at most 1% of the bitstream. Second, no single good PSV is best for

all images. This observation led us to make automatic PSV determination the default

behavior of our encoder. Third, the best PSV always generates the fewest additional bits.

This is because the best PSV best predict a pixel’s value, and the difference between a

pixel and its predictor is small. So the compressed image comprise less additional bits.

Fourth, the number of bits allocated to additional bits is much more variable than the num-

ber of bits allocated to category symbols. The total bits of additional bits is

and the total bits of category symbols is , where is the number of dif-

ference values in category n and is the length of Huffman code for category symbol

n. While both n and may vary between 1 and 15, the Huffman encoder assigns a

shorter code (smaller) to a category with more values falling in (larger). This

makes the category symbol size less variable than the additional bits size. Finally, the best

PSV is always one of the two-dimensional PSVs (i.e. PSV 4, 5, 6 or 7), and PSV 3 always

C n() n�
n 1=

15

�

C n() L n()�
n 0=

15

� C n()

L n()

L n()

L n() C n(

Experiments with a Lossless JPEG Codec September 2, 1994 17

compresses poorly. Is this a general pattern? Answering this question led us to study a

larger set of images.

5.2.2 Average compression ratio for each PSV

We calculated the average compression ratio for each of the seven PSVs by apply the loss-

less JPEG algorithm with Huffman table optimization to twenty images and measuring the

compression ratios. The images contain various scenes of people, nature, space craft,

rooms, sports activities, scientific demonstrations, and graphs. Figure 5 shows the experi-

ment results. For each PSV, the bar gives the mean compression ratio and the line at the

top of each bar gives the standard deviation.

FIGURE 5. OLEncode Average Compression Ratio for the Seven PSVs

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7

C
om

pr
es

si
on

 R
at

io
 (

or
ig

in
al

 im
ag

e)
/(

co
m

pr
es

se
d

im
ag

e)

PSV

standard deviation

Experiments with a Lossless JPEG Codec September 2, 1994 18

The results are consistent with our hypothesis: two-dimensional PSVs generally generate

higher compression ratio than one-dimensional PSVs. PSV 4 compresses best on average,

PSV 5 and 6 compress equally well and a little bit better than PSV 7. Among the three

one-dimensional PSVs, PSV 3 compresses the worst. On average, the compression ratio

of best PSV is about 0.5 bigger than worst.

Why should two dimensional PSVs compress better than one dimensional PSVs? PSV 4

(), PSV 5 (), or PSV 6

() uses three neighbor pixels in their predictor computation;

PSV 7 () uses two; the rest only use one (, and). So

it seems that the more information that is used, the better the compression ratio. Among

the three one-dimensional PSVs, PSV 3 uses the “farthest” neighbor, the upper left pixel,

and compresses the worst. PSV 5 and 6 have similar prediction functions which lead to

similar compression ratio. PSV 4 not only has the advantage of best average compression

ratio, it contains less operation than PSV 5 and 6 in predictor calculation. From these

observations we conclude that the best predictors are those which use as much locality as

possible and average nearby pixels to reduce the effects of image noise.

To optimize the prediction for each image, a linear regression model can be used to derive

an optimal prediction function such that

, where is the pixel value at (x y). Then this function is used

in OLencode to better predict each pixel and generate a higher compression ratio.

Px y 1–, Px 1– y, Px 1– y 1–,–+ Px y 1–, Px 1– y, Px 1– y 1–,–() 2⁄–

Px 1– y, Px y 1–, Px 1– y 1–,–() 2⁄–

Px y 1–, Px 1– y,+() 2⁄ Px y 1–, Px 1– y, Px 1– y 1–,

Px y, c1Px y 1–, c2Px 1– y, c3Px 1– y 1–,+ +=

Min Ix y, Px y,–() 2

x y eimag�,
�{ } Ix y,

Experiments with a Lossless JPEG Codec September 2, 1994 19

References

1. ISO/IEC Information technology - Digital compression and coding of continuous-tone
still images. ISO/IEC DIS 10918-1

2. Mark Nelson. The Data Compression Book. M&T Publishing, Inc. (1991)

3. William B. Pennebaker, Joan L. Mitchell. JPEG Still Image Data Compression Stan-
dard. Van Nostrand Reinhold (1993)

4. Jef Poskanzer. Extended Portable Bitmap Toolkit (PBMPLUS), Distribution of 10 Dec.
1991.

5. Gregory K. Wallace. The JPEG Still Picture Compression Standard, Communications
of ACM, April 1991, vol. 34 no. 4, pp. 30-44

Experiments with a Lossless JPEG Codec September 2, 1994 20

Appendix A

FIGURE 6. Image 1: Lena

FIGURE 7. Image 2: football

Experiments with a Lossless JPEG Codec September 2, 1994 21

FIGURE 8. Image 3: F-18

FIGURE 9. Image 4: flowers

