
CTN Software Installation Guide

Guide to Installing Software on UNIX and
Windows Computers

Stephen M. Moore
David E. Beecher
Nilesh R. Gohel

Mallinckrodt Institute of Radiology
Electronic Radiology Laboratory

510 South Kingshighway Boulevard
St. Louis, Missouri 63110

314/362-6965 (Voice)
314/362-6971 (FAX)

Version 2.11.1
January 26, 2000

This document provides installation instructions and test
procedures for CTN software. These instructions will
help you extract the software from a CD ROM or a file
from an ftp site and run some simple tests to verify the
software is operating properly.

Copyright (c) 2000 RSNA, Washington University
/wuerlb/documentation/dicom/ctn/installation.frm

1 Introduction

This manual describes procedures for installing the CTN demonstration software developed by
the Electronic Radiology Laboratory (ERL) at the Mallinckrodt Institute of Radiology (MIR).
This software was developed on a SUN SPARCStation 10 under SunOS 4.1.3 and under Solaris
2.x. It has been compiled and tested under other machines that will be listed below. This manual
discusses the installation procedure for each of these machines and identifies any machine-depen-
dent issues. This manual also provides a description of the software libraries, applications and
other source files present with the system and procedures used to test the installation.

Please note that the directions for building the system are slightly different from previous ver-
sions. We are also supporting the PostgreSQL database with this release.
1

2 Machine Specific Details

The CTN software is written in ANSI C and has been compiled on several different machines:
Sun SPARCStation 10, SunOS 4.1.3, Solaris 2.3, Solaris 2.4, Solaris 2.5.1 DEC Alpha worksta-
tion, OSF/1 3.0 Some users have contributed changes for compiling on AIX, HPUX and Linux
systems. The previous release was compiled on an IRIX system. Since we do not have access to
these three environments, you may find some problems compiling on these machines.

This section identifies any machine-dependent issues that we have encountered.

2.1 Silicon Graphics workstation, IRIX

This information is based on experience with SGI machines running 5.x releases of Irix. We are
likely well behind the current release of the OS.

We had a report from someone using Sybase on an SGI about installation problems. The mes-
sages said: ninit: t_open, No such device or address

ninit: All master network listeners have failed.

Sybase says this is a known problem with SGI and that you need to install an SGI patch to correct
the problem. The SGI patch is EOE1.sw.svr4net

We don’t have more explicit information about what version of IRIX this applies to or how to
obtain the patches from Silicon Graphics.

There are also some libraries that Silicon Graphics uses for network operations that appear in
libnsl.a. If you find unresolved references to t_errno or t_open, you will want to include
the switch -lnsl in the macro LIBS_OS for the SGI environment. We also had a report about a
problem with the SGI implementation of gethostbyname. To get around this, the user included
the switches -lc -lnsl on the link line (in that order).

Since these reports, we have compiled a version of the software under Irix 5.2 and using mSQL.
We have not run extensive tests, but we were able to get a clean compile.

2.2 Linux

We have compiled the software on Red Hat Linux (6.0) and run some simple tests. Linux does
not ship with Motif but there is a Motif clone called LessTif (http://www.lesstif.org). We have
compiled the CTN software and performed minimal tests with this package.

2.3 Win32
2

We are compiling the software using version 4.2 of the Microsoft Visual C++ compiler and ver-
sion 6.5 of the Microsoft SQL server. We have not seen any issues with either the compiler or
database.

3 Database Issues

Some of the CTN demonstration applications require the use of relational database. In the origi-
nal implementation, this was accomplished through the use of Sybase. In this version of the CTN
software, we have included an implementation that can use Sybase, miniSQL, PostgreSQL on
Unix systems and Microsoft SQL Server 6.5 on Windows NT systems. Users can choose the
appropriate version through the use of the proper environment files.

The remainder of the section contains notes about the installation of Sybase, miniSQL and Postgr-
eSQL. This does not serve as a substitute for the documentation for those products. We do not
include precompiled libraries or executables for either database product.

3.1 MiniSQL Installation Notes

The author of miniSQL has changed his licensing terms. We feel that we can no longer distribute
the miniSQL code with our software. Your organization will need to obtain the software and
abide by the licensing rules. The ftp site is bond.edu.au. miniSQL is now at version 2 (or higher).
We have email from a user who said he only needed to change the scripters for creatating tables.
We have included the changes in cfg_scripts/msql2 but have not tested it yet. We are run-
ning version 1.0.16.

There are a number of steps that must be performed in order to successfully install MiniSQL
(msql) on your particular machine. These steps are enumerated below:

1. You should definitely print out the file .../doc/mSQL-1.0.ps. This is a copy of the user/admin
manual and is very useful.

2. In general, follow the instructions in the README file in the MiniSQL install directory for compil-
ing, installing, and testing msql.

3. You should create an msql user, and that user should be a member of the group that owns the CTN
files (as released, group ID 100). Log in as msql to perform the following tasks. Database adminis-
tration can only be performed as the msql user (please remember this fact).

4. Obtain the msql software from the ftp site listed above. Please pay the licensing fee.

5. Follow directions in README file for the make, setup, and install of msql. We suggest you use the
default installation directory, /usr/local/Minerva. It also tells you how to start the server,
etc. Be advised that when you start the server (msqld&) you will probably get a message that says:

Couldn’t open ACL file: No such file or directory
This is ok. It just means that all the msql databases created will be globally available to all users. If
you want to restrict usage, there are sample acl files around which will tell you how to do that, but
for the purposes of testing, it probably just easier to leave access open.

6. Proceed to the directory/msql-version/targets/<your target>/tests in
the mSQL distribution.

7. The “killer” script should now run.
3

8. The “rtest” script should also run.

9. If all this goes well, this should confirm that msql is alive and well.

10. You will have to make small changes to the script files killer and rtest to correctly specify
locations for executables, etc. Please remember that as a rule, we have not changed any of this
release, and we have had very few problems with the system to this point. Be advised that building
and testing the system may be slightly different than you are used to with the DICOM distribution
developed at MIR.

3.2 Sybase Installation Notes

There are a number of steps that must be performed in order to successfully install Sybase on your
particular machine. The majority of these steps are outlined in the Sybase Installation Guide and
will not be repeated in this section. If you are not using Sybase, the scripts that are supplied to
you will be unusable except to examine them for functionality before porting them to your partic-
ular database environment.

After successfully installing Sybase, there are a couple of items that need some special attention.
First, you must add a new user to the Sybase system called sybase with a password of sybase.
All libraries supplied access the databases(s) with this user name and password. You must also be
sure that you have successfully created devices on your system that Sybase can use for database
storage. These device descriptions will of course vary depending on your system configuration.
The script CreateDevice.template, located in ../cfg_scripts/Sybase/
MakeDevices, will be of considerable use. You may need to be logged in under the sybase
user account to use these scripts. The applications can be run from other accounts because they
have code to use the sybase account.

Note: It may be OK to use the account name sybase, but it is a bad idea to use
sybase as the password. for that account. We strongly suggest that you use a dif-
ferent password. for the account.
Sybase itself has a password for each user that is different than the system pass-
word. By default, our software uses the name sybase and the password sybase
to access the SQL server. If you want to use a different password for sybase, you
need to change the constant SYBASE_PASSWORD which is defined in
facilities/tbl/tbl_sybase.h

A problem that you will most likely experience using Sybase is one of running out of user connec-
tions at some point. This is relatively easy to repair using the following commands. Get into the
interactive SQL interpretor (isql -Usa), and execute the command sp_configure.

The two parameters to look for are “user connections” and “memory”. Both of these will most
likely need to be increased and this is accomplished as follows:

sp_configure “memory”, 8192
go
sp_configure “user connections”,50 (or 100)
go
reconfigure
4

go
shutdown (you need to restart the server)
go

This procedure will set up the new parameters and restart the server so they can take effect. Your
memory is most likely defaulted to 4096 and therefore doubling it is a reasonble thing to do. The
user connections parameter is probably set at 20 or so and is actually the resource you are running
out of. Be careful, you can’t (shouldn’t) increase the user connections without increasing the
memory, or your server may not restart....so be sure you get the memory increased.

3.3 PostgreSQL Installation Notes

The PostgreSQL software is available at www.postgresql.org. If you are using Red Hat Linux 6.0
or greater, this software can be installed from the Red Hat distribution.

Pay special attention to the environment variables PGDATA and PGLIB which should be set for
the postgres account. If these are not set properly, the database initialization (initdb) will fail.
The default values in the Red Hat Linux 6.0 environment are:

Similarly, when you use the CTN applications from a different account (not the postgres account),
you will need to set the PGUSER environment variable to postgres.

3.4 MS SQL Server Installation Notes

The MS SQL Server product provides a setup tool that guides you through the installation pro-
cess. When the installation is complete, you will be able to interact with the server using interac-
tive SQL and their GUI-based management tools. The CTN software communicates with the
server using ODBC, and your PC must be configured to use that channel. Check the ODBC con-
figuration to make certain it is correct.

Open the Control Panel folder and then open ODBC. Select the “System DSN” tab. There will be
a list of system data sources. There should be one called LocalServer which uses the SQL Server
driver. This entry is created by the SQL Server installation procedure. Our server is configured
with these values (set by the SQL Server setup program).

Variable Default Value (RH Linux 6.0)

PGDATA /var/lib/pgsql

PGLIB /usr/lib/pgsql

Data Source Name LocalServer

Description:

Server: (local)

Network Address: (Default)
5

The CTN runs on the same machine as the SQL Server, so we use the local connection. We do not
use the trusted connection option, but you might decided to do so depending on how you want to
configure your system.

Network Address: (Default)

[] Use Trusted Connection
6

4 X11/Motif Installation Notes

All of the Motif-based applications in this release were designed with the commercially available
interface builder, UIM/X. These applications automatically look for the file XKeysymDB in the
directory /usr/lib/X11. If it isn’t found, you will receive (many) warning messages of the follow-
ing type when an application is started:

.

.
Warning: translation table syntax error: Unknown keysym name: osfAc-
tivate
Warning: ...found while parsing ‘<Key>osfActivate:ArmAndActivate()’
.

While these messages are not fatal to the application, they are a bother, and can be alleviated by
placing the proper keysym definition file in /usr/lib/X11/XKeysymDB. This keysym file
is typically a part of standard X11/Motif distribution, but may simply be placed in a different
location than the one specified previously. The color definition file /usr/lib/X11/rgb.txt
should also be present.

4.1 Motif/Linux

We have installed the LessTif package as a Motif clone. The software and documentation are at
www.lesstif.org. We have used the default installation directory and the 1.2 version of Motif.
Please read the LessTif documentation for installation instructions. One detail for RH Linux is
that you will probably want to update the file /etc/ld.so.conf with the path to the LessTif shared
libraries. Using the default installation location, this value is /usr/local/LessTif/
Motif1.2/lib.
7

5 Installation Procedure

The installation procedure consists of several steps:

• Extract files from distribution CD ROM or ftp site.

• Select database package by using proper environment file (or by modifying an existing
file).

• Compile some or all of the library modules.

• Move libraries to destination directory.

• (Optionally) compile some or all of the applications.

• Move binaries to destination directory.

• Run test programs.

5.1 Extract Files from Distribution

The software is distributed in both tar and zip formats. You will find these files on the distribution
CD from the RSNA or on an ftp site (ftp.erl.wustl.edu, ftp.rsna.org).

Once the software has been extracted, you should find these directories in DICOM_HOME:

apps Contains source code for all applications delivered with this system. You will
find a number of subdirectories which contain individual applications.

bin Contains target directories for binary versions of our applications. You will
find separate directories under bin for each machine that we support, but you
will find no binaries. You may choose to install your binaries in these direc-
tories or in a different directory (like /usr/local/bin).

contributed Contains scripts, instructions, software contributed by users.

cfg_scripts Contains configuration scripts and data used to setup the databases needed for
CTN applications.

environments Contains short scripts which set up the environments needed to compile and
link the software. You will modify these files to fit your system.

facilities Contains subdirectories with the sources for each of the major subroutine
libraries.

include Contains the common include files defined for each facility.

lib Contains the target directories for different machine architectures. The soft-
ware release does not include precompiled libraries.
8

libsrc A directory which has links to all facilities. This serves as the build area for
the libraries.

5.1.1 Unix: Extract Files from Distribution

The files on the CD have these user and group IDs:
User 300 dicom
User 301 msql
Group 100 dicom

These are the user (uid) and group (gid) used at ERL. The specific numbers we chose are unim-
portant to you. You should decide who should own these files (owner) and which group should be
used. We chose a dummy account (dicom) to own the files. Developers and users of the software
are granted access by being members of the proper group. To extract the files:

• Choose owner and group for files and establish appropriate uid and gid.

• Create a home directory for the distribution. We will refer to this as DICOM_HOME. Set
owner/group of DICOM_HOME to uid/gid.

• Become owner by su owner or login as owner.

• Set current directory to DICOM_HOME:
cd DICOM_HOME

• Mount the CD ROM on your machine. Assuming the mount point is /cdrom, extract files
with tar: tar xvf /cdrom/rsna97#1/ctn/ctn-2.9.0.tar. (Note: later
versions of the software may have a different version number.) Create msql account (if
you want to install msql software)

These steps should extract the files from the distribution CD. They will be owned by owner (with
user ID uid) and will have a group ID which is owner’s group ID. If owner’s group ID is gid, all
of the files should now have the proper user IDs and group IDs. If the files are not extracted with
the proper IDs (or you decide to use different IDs), you can change the IDs with the Unix chown
command.

The software is delivered with read and write protections turned on for the owner and group mem-
bers. “Other” users are granted read permission.

5.1.2 Windows: Extract Files from Distribution

Use your favorite Windows zip program to extract the files. The files do not have to be extracted
to a specific directory, but we will assume you extract them to C:\ctn for the sake of this docu-
ment.

5.2 Compilation Environment

The first step in compiling the libraries or binaries is establishing your environment. This allows
you to :
9

• Identify target directories

• Define compiler options

• Define machine specific options

5.2.1 Unix: Compilation Environment

The environments directory contains several directories. Each directory is targeted at a spec-
ifc operating system (sunos, solaris, osf). In the OS-specific directories are pairs of files that
define the compilation environment Examples are:

solaris.2.x.msql.gcc.noopt.env make.solaris.2.x.msql.gcc.noopt
solaris.2.x.msql.noopt.env make.solaris.2.x.msql.noopt

make.os.options is a file which is included by all Makefiles for the purpose of compiling the sub-
routine libraries (and applications). It defines a global set of rules to be used during the make pro-
cess. The make environment has two sets of macros. One set of macros is used to define the
existence of features in your system. If a macro is defined to the compiler, certain parts of the
CTN code will be compiled and operational. A second set of macros defines other switches and
constants that control the general system environment. Table 1 lists the macros that turn on fea-
tures in the CTN code. Table 2 lists the other macros that control the compilation environment.

The best approach is to examine the existing files and to modify them to fit your environment.

TABLE 1: Macros Defined for Enabling CTN Features

Macro Name Definition

DEBUG Turns on some additional print/debug information in facilities. This
code will be tripped when you place a facility in “debug” mode.

BIG_ENDIAN_ARCHITECTURE Needs to be defined on big-endian on big-endian machines.

LITTLE_ENDIAN_ARCHITECTURE Needs to be defined on big-endian on little-endian machines.

SHARED_MEMORY Required for shared memory operation in queueing functions.

SEMAPHORE Required for semaphore operations in queueing functions.

USLEEP If the usleep function is provided by your operating system.

SYBASE Defined if your system has sybase installed.

MSQL Defined if your system has miniSQL

USEREGCOMP Defined if you want to use the regcomp and regexec functions. These
are found on HP and other systems.

SNOOP Turns on SNP facility, DULsnoop extension, and DICOM snooper
applications (Note: These will only work in a Solaris 2.x environment
on Sun equipment.
10

CTN_NO_RUNT_PDVS In some instances, the CTN can generate 0-length PDVs when writing
data over the network. Turning on this option will perform some addi-
tional runtime tests to eliminate this. This was defined to satisfy one
vendor who believes that 0-length PDVs are illegal. We don’t agree,
but added the software as an option.

CTN_USE_THREADS Define this compile time macro to make the CTN code thread safe.
Note: This is currently under test with Solaris and Windows and is not
guaranteed to produce thread safe code.

TABLE 2: Macros Defined for Controlling the Compilation Environment

Macro Name Definition

LIBPATH_X11 Switch passed to linker for pathname for X11 libraries. Probably need not be
defined unless your X11 libraries are not in a standard location.

LIBPATH_MOTIF Switch passed to linker for pathname for Motif libraries. Probably need not be
defined unless your Motif libraries are not in a standard location.

LIBPATH_UCB Switch passed to linker for pathname for UCB libraries that are required for some
operations (socket) under Solaris.

LIBPATH_DATABASE Switch passed to linker for pathname for database libraries. This can be the path-
name for sybase libraries or for a different database product.

LIBS_X11 Switches passed to linker to tell it which libaries to search for applications that
use X11 (not the path to the libraries).

LIBS_MOTIF Switches passed to linker to tell it which libraries to search for applications that
use Motif (not the path to the libraries).

LIBS_XAW Switches passed to linker to tell it which libraries to search for applications that
use the Athena widget set (not the path to the libraries).

LIBS_OS Switches passed to linker to tell it to search any libraries that are dependent on
the OS. We found this important for some libraries under Solaris 2.x.

LIBS_DATABASE Switches passed to linker to tell it to search libraries to resolve database refer-
ences. This is the switch you would use to tell the linker to search the libraries
supplied by sybase to resolve the TBL references to sybase functions (or
miniSQL).

LIBS_CTN The list of libraries provided in the CTN software in order needed to resolve ref-
ererences. This is a convenience macro that makes it simple for someone to link
an application (without having to remember each CTN library).

Beginning with version 2.11, we are compiling the CTN object files into a single
library. This list is now the single CTN library and any system specific libraries.

TABLE 1: Macros Defined for Enabling CTN Features

Macro Name Definition
11

solaris.2.x.msql.gcc.noopt.env, solaris.2.x.msql.noopt.env, and
solaris.2.x.sybase.noopt.env are files which are used to establish the environment
for building the software. These files contain “setenv” commands for the csh and should be used
by users of the csh as follows:

source solaris.2.x.msql.gcc.noopt.env
If you wish to use a different shell, you may need to alter the syntax in the file and how you use
the file.

These environment files contain variables that define path names for files and target directories. It
is safest to make these absolute path names.

DICOM_ROOT The root directory for the installation. Most other directories are defined from
this point.

DICOM_BIN The location of the compiled binaries for the system. This will be the target
directory when you rebuild the applications. Our destination directory is
DICOM_HOME/bin/OS. You may choose to install your binaries some-
where else (e.g. /usr/local/bin).

DICOM_LIB The location of the compiled library files. This will be the targetdirectory
when you rebuild the libraries. Our destination directory is
DICOM_HOME/lib/OS. You may choose to install your libraries some-
where else (e.g. /usr/local/lib). This is also used by our Makefiles
when linking applications.

OS An environment variable that we pass to makefiles to define the operating system.
Will get used for conditional compilation. Values that are supported are: AIXV3
HPUX IRIX OSF SOLARIS SUNOS ULTRIX.

CFLAGS_X11 Any flags passed to compiler when compiling X11 applications. In some envi-
ronments, this is a -I switch to give the location of include files.

CFLAGS_MOTIF Any flags passed to compiler when compiling Motif applications. In some envi-
ronments, this is a -I switch to give the location of include files.

LONGSIZE The size of a variable (in bits) of type long on your system. Needs to be defined
for our code to compile.

INTSIZE The size of a variable (in bits) of type int on your system. Needs to be defined
for our code to compile.

SHORTSIZE The size of a variable (in bits) of type short on your system. Needs to be
defined for our code to compile.

C_OPTS The concatenation of a number of options to be passed to the compiler. Make-
files are expected to set CFLAGS equal to $(C_OPTS) plus whatever local
options are needed.

TABLE 2: Macros Defined for Controlling the Compilation Environment

Macro Name Definition
12

DICOM_INCLUDE The location of the common include files for the subroutine libraries. Our
Makefiles use this variable but also require that the include directory is
DICOM_HOME/include. (The “make” supplied by one of our computer
vendors has a problem with the VPATH variable.) Please use
DICOM_HOME/include for this variable.

DICOM_MAKE The path name to a file which is included by all Makefiles in the system. This
allows us to set a number of global make options.

These environment files contain other variables which define how the code is to be compiled.
Theses are:

ARCHITECTURE One of LITTLE_ENDIAN_ARCHITECTURE or
BIG_ENDIAN_ARCHITECTURE.

OS One of AIXV3, IRIX, HPUX, OSF, ULTRIX, SUNOS or SOLARIS. This
variable is used in make.os for machine dependent compilation.

CC The C compiler to use to compile libraries and applications. This should be
an ANSI compliant C compiler. If your system’s cc is ANSI compliant, you
do not need to define this variable (its default is CC).

5.2.2 Windows: Compilation Environment

The compilation environment is managed within MSVC++. The one environment variable to set
is DICOM_BIN. This is the destination directory for the binaries and is used by a make file to
distribute the binaries are compiling/linking in the interactive environment.

The windows compilation environment uses the include file dicom_platform.h to define
macros for controlling compile features. The file that is distributed has values set for Pentium
machines, the Micro SQL Server and multi-threaded proesses. The macro definitions are shown
in Table 3.

TABLE 3: Macros Defined for Compiing in a Windows Environment

Macro Name Value Description

LONGSIZE 32 The size of a variable of type long on your system.
Needs to be defined for our code to compile.

INTSIZE 32 The size of a variable (in bits) of type int on your
system. Needs to be defined for our code to compile.

SHORTSIZE 16 The size of a variable (in bits) of type short on your
system. Needs to be defined for our code to compile.

LITTLE_ENDIAN_ARCHITECTURE Defined because the Intel machines are little-endian
13

5.3 Compiling and Installing Libraries

5.3.1 Unix: Compiling and Installing Libraries

To compile the libraries, you will need to specify a target directory where they are “installed”. We
place our libraries in DICOM_HOME/lib/OS. For example, we use:

/dicom1a/projects/dicom94/lib/sunos
You may choose to install the libraries somewhere else (/usr/local/lib). You may need
special privileges to install these files if you do not install them under DICOM_HOME.

To build and install the libraries, you first create soft links from the actualy source code to the lib-
src directory and then you install the files. Use these steps

cd facilities
make links
cd ../libsrc
make install

5.3.2 Windows: Compiling and Installing Libraries

These instructions are based on our use of the MSVC++ environment. The library sources are
collected in a single directory to ease the task of compiling. The compiling step will produce a
single ctn library.

1. Start the Developer’s Study and selet Open Workspace. Filter on .mak files and open:
C:\ctn\libwindows\ctnlib.mak

2. Select the debug or release version. We have run both.

3. Select project->settings. Select the C/C++ tab and pick the Code Generation pulldown. On that
page, select Multithreaded or Debug Multithreaded in the Use run-time library box. Some of the
server applications are multi-threaded.

4. Compile the library. You will get a number of warning messages, but should not get any fatal
errors.

TBL_SQLSERVER Defined to use Microsoft SQL server. If your site
does not have this, remove this definition.

CTN_USE_THREADS Defined to allow thread-safe applications. This
needs to be defined if you will use some of the server
applications, like archive_server.

TABLE 3: Macros Defined for Compiing in a Windows Environment

Macro Name Value Description
14

5.4 Compiling and Installing Applications

5.4.1 Unix: Compiling and Installing Applications

The procedure for building the applications is similar to building the libraries. You will need to
set up the environment to identify the location of the library modules (used during the link phase)
and the destination for binary files to be installed.

A Makefile is included in the apps directory which is used to make all of the applications.
Each subdirectory has a Makefile for making the individual application(s) in a subdirectory.
Each Makefile has the following “targets”:

clean Remove any object, core and binary files.

application Compile and link the application.

install Build the application (if necessary) and install it in $(DICOM_BIN).

indent Passes code through indent program to enforce coding style.

To make and install all of the applications, type
make install

from the apps directory.

Please note that we have changed the apps/Makefile to not install the Motif applications by
default. To install the Motif user interface applications, type

make gui-install

The TBL facility provides a standardized interface to the three database Sybase, mSQL and Post-
greSQL. When applications are linked, the user needs to specify which database is to be used.
This is done in the master makefile found in the environments directory by defining macros as
listed in Table 2. For example, macro definitions to enable sybase are:

LIBPATH_DATABASE = -L/usr/sybase/lib
LIBS_CTN = -lctn $(LIBPATH_DATABASE) -lsybdb

These macros instruct all application Makefiles where to find the sybase libraries (supplied by
sybase) and the names of the libraries to resolve tbl and sybase function calls.
LIBPATH_DATABASE defines where the linker will find libsybdb.a.

The macro definitions when using the miniSQL implementation are:
LIBPATH_DATABASE = -L/usr/local/Minerva/lib
LIBS_CTN = -lctn $(LIBPATH_DATABASE) -lmsql

5.4.2 Windows: Compiling and Installing Applications

Applications are built using the MSVC++ environment. Open the workspace
C:\ctn\apps\win32apps.mak. You will probably need to tell the system where to find
15

include files for the CTN libraries and where to find the CTN library file. Select tools->options
and examine the options for include files and library files. The include files should have
C:\ctn\include. The library path should include C:\ctn\libwindows\debug (if you
built the debug library). Once the parameters are set, you can build individual applications or
build all of them by selecting win32apps - Win32 Debug or win32apps - Win32 Release.

You may need to change the compile options for applications if they do not link properly. As
described in Section 5.3.2, select Debug Multithreaded or Multithreaded in the Code Generation/
Use run-time library drop down.

When the applications have been compiled and linked, the executables are left in various subdi-
rectories. You can pull them together and install them in DICOM_BIN using a mak file in the
apps directory:

nmake /f win_install.mak debug_install
This copies the debug version to the directory pointed at by the environment variable
DICOM_BIN. nmake is one of the applications that is bundled with MSVC++ and should be in
your path.

5.5 Run Time Notes

5.5.1 Windows: Run Time Notes

Applications that use the SQL Server database make use of an environment variable to get access
to the database. The environment variable SQL_ACCESS is used when tables are opened to
determine the database server, login name and password. The format is:

SERVER:login:password:
We use the ODBC connection to LocalServer and use the sa account for access. Therefore, we set
this variable to:

LocalServer:sa:<password>:
You might choose to use a different server naming convention or use different login names for
SQL access. You create the login name and password using the SQL Server tools. sa is the Sys-
tem Administrator account that comes with the system. You can use this account or create
another.

If you choose to use the Trusted Server feature of the system, you can leave the login and pass-
word values blank in the SQL_ACCESS variable: “LocalServer:::”.

The SQL Server has security features that allow the administrator to restrict access to tables in the
database. You may find that you need to open up access to get the CTN software to operate prop-
erly. Run the CTN programs as described below or in the User’s Guide. If they complain about
access privileges, you will need to use the SQL Enterprise Manager to give you access rights to
the databases (insert, delete). There are several methods for allowing access. One simple method
is to activate the Manage pulldown (in SQL Enterprise Manager) and select logins. For the login
that you are using, alias that login as dbo (stands for database owner) for the databases you are
using. That should give you the privileges you need. We also suggest you read the SQL Server
16

documents to understand their security features (they will certainly explain them better than we
can).

5.6 Test Procedure

Once the applications have been installed in the destination directory, there are several tests which
should be run to verify that the software is working on your system. The section presents the test
procedure in order. You may be able to run these tests in a different order but it is safest to ini-
tially run them in the order presented.

5.6.1 Examine Images

In this section, you will examine the test images and any images that you already have. The test
programs distributed with this software assume that image files consist of a stream of bytes that
correspond to the DICOM little-endian (implicit) transfer syntax as defined in Part 5 of the Stan-
dard. We also have a switch that allows us to examine images that were stored in big-endian for-
mat. We are working on support for DICOM Part 10 files and would appreciate any reports of the
test programs failing on Part 10 files.

1. Obtain test images from our ftp site or from the distribution CD. At the ftp site (ftp.erl.wustl.edu),
these will be in the directory /pub/dicom/images/version3/ctntest. Place the test
images in the images directory of the distribution.

2. Run the program dcm_dump_file on one of the images in the images directory:
dcm_dump_file image

This program will produce verbose information on the standard output and will print a description
of all of the attributes in the image.

3. Run the program dcm_dump_file on one or more of the images that your organization has or
produces:

dcm_dump_file image or
dcm_dump_file -b image

The -b switch is used for images that are stored in big-endian byte order. Hopefully, the program
will print a similar description of your image(s). If the program fails, try adding the -v switch for
even more verbose information. If this still fails, you need to contact the CTN provider to find out
why their software does not understand your image format.

4. Run the program dcm_verify on one of the supplied test images:
dcm_verify image

This program examines an image and tries to determine if it includes all of the Modules and
Attributes as defined by Part 3 of the Standard. It looks at each Information Entity and dumps
information to the standard output. The last part of the output is a summary of type 1 and type 2
attributes that are missing. Hopefully, we have not included any images that are incomplete.

5. Run the program dcm_verify on one of your images. Since you have already accomplished step
2 above, you should know if you need the -b switch for this program. You will get a detailed list of
the Information Entities, Modules and Attributes present in the image. The program will also print
a list of type 1 and type 2 attributes that are missing from your image. If your V3 image fails to
pass this test, it will likely cause problems for the rest of our software. You should examine the out-
put of this program and Part 3 and correct your images to include all of the required attributes (or
contact the CTN provider who may have incorrectly implemented the rules for this test program).

6. This test is only available on Unix systems.
Run the program dcm_x_disp on one of the test images as well as one of your own images.
17

dcm_x_disp will display the image on an X11 display; it should look “reasonable”, although
there may be problems with window center and width. dcm_x_disp understands the -b option.
Don’t forget to set the DISPLAY environment variable. dcm_x_disp requires certain parame-
ters to be present before an image can be displayed. See the manual page for dcm_x_disp if
there are problems.

It is possible that your organization may not agree with the summary information produced by the
dcm_verify program. If you feel that we have made an error, please contact us so we can cor-
rect the problem.

5.6.2 Test Network and Snooper Software

This section describes a procedure for testing network connections between CTN applications and
vendor applications. These tests demonstrate that Associations can be established which exercise
the storage and verification classes. The last test exercises the DICOM communications monitor-
ing (snooper) software that was specifically developed for the Solaris 2.x environment. The
snooper software is only available under Solaris.

1. Run the program simple_storage which acts as an SCP of the storage and verification classes:
simple_storage portnumber

portnumber is the TCP/IP port address you choose for this server. It is typically the well known
port number reserved for DICOM applications, 104. On Unix systems, you will need to be root to
use this port number. You may prefer to choose a different number. For example, we run our tests
with port 2100.
Once the server has started, try to establish a connection with dicom_echo:

dicom_echo -c DICOM_STORAGE hostname portnumber
The -c switch tells dicom_echo to use DICOM_STORAGE as the called Application Entity Title.
hostname is the name of the machine which is running simple_storage. portnumber is
the number you selected for simple_storage at the top of this step.
If everything works as expected, dicom_echo will print several lines of summary information
that are extracted from the C-ECHO Response message. The last line should be “Verification Suc-
cessful”. If this does not work as expected, run both simple_storage and dicom_echo with
the -v switch.

2. simple_storage has an application title of DICOM_STORAGE. This program is picky and
will reject association requests that do not use the proper called application entity title. This feature
can be overridden by using the -i switch on simple_storage (-i stands for ignore some incor-
rect parameters in the Association request). If you use the -i switch, simple_storage has no
mechanism for verifying that the caller’s title is recognized. Therefore, you should be able to run
whatever application you have which implements the Verification class and have it send a C-ECHO
request message to simple_storage.

3. Run this test with one of the example images provided on our ftp site. Pick an arbitrary directory to
work in. We will call that directory A. Create subdirectories in A with names that correspond to
modalities as defined by the Standard: MR, CT, US,... In the directory A, run simple_storage as
defined above. Use the program send_image to establish an Association with
simple_storage and send one image:

send_image <host name> portnumber imagefile
send_image should print response messages when finished. If the image transmission was suc-
cessful, there will be an image file in one of the subdirectories you created. (If you run
simple_storage without the expected subdirectories, simple_storage will create them
for you.)

4. Repeat test 3 with one of your own images.
18

5. Use send_image to send an image to your SCP of the Storage Class. There are switches to
send_image which allow you to set the calling and called titles appropriately. Real applications
will be more stringent about checking those parameters.

6. [Note: This test only applies to Solaris 2.x systems on which the SNP facility, DULsnoop exten-
sion, and DICOM snooper applications have been installed. This software has only been tested with
Ethernet networks using the “/dev/le” interface. The test assumes that the same type of network
and interface will be used.]
Use the dcm_snoop application to monitor communications as described in step 1 of this section.
The dcm_snoop application has to be run in super-user mode on a third machine that shares the
same network as the two running the simple_storage and dicom_echo programs. The
command on the third machine that needs to be given prior to the execution of the
simple_storage and dicom_echo programs is:

dcm_snoop /dev/le ppa host1 host2 portnumber 8192 1
ppa is the number of the interface (generally 0 unless there is more than one Ethernet interface on
the machine) where 0 is for /dev/le0, 1 is for /dev/le1, and so on.
host1 is the name/IP address of the machine running dicom_echo.
host2 is the name/IP address of the machine running simple_storage.
portnumber is the port number used by simple_storage.
8192 is the buffersize used.
1 is the number of associations to be monitored.
If everything works as expected, the output of the dcm_snoop program will show the exchange of
the various PDUs of the DICOM association. The association request and accept parameters will be
dumped. The DICOM commands will also be dumped.

5.6.3 Test Database Routines

This section describes a procedure for testing the table facility (TBL) which is used as a basis for
the database operations in the CTN. The applications are found in the ../apps/tbltest
directory. These applications should be available after the make: ttunique, ttinsert,
ttdelete, ttselect, ttlayout, and ttupdate. These tests will demonstrate that
you have the ability to manipulate records contained in the database. It will be helpful to inspect
the source to these routines before running each application to get a feeling for the how the appli-
cations are designed and what they actually do.

The first step is to create the database tables. The steps for creating the tables under Unix are
included in this paragraph. Configure the database with the appropriate temporary tables needed
to run these test procedures. This configuration script is CreateTables and may be found in the
../cfg_scripts/sybase or cfg_scripts/msql directory. If you are using a database
system other than Sybase or miniSQL these configuration scripts will need to be modified appro-
priately. The arguments to this script for this test should be TBLTest TBLTest. Upon suc-
cessful completion, this script will create two new tables in the specified database, TBL_Persons,
and UniqueNumbers.

Use the graphical user interface tools provided by Microsoft to create a database: TBLTest. After
this step, you need to create database tables. In the Windows environment, we use the SQL Enter-
prise Manager. Run this application and select tools->SQL Query Tool. From this tool, you can
select Load SQL Script and run the script in
cfg_scripts/mssql_server/createtbltesttables.sql.
19

1. The success of the table creation can be checked by running the program ttlayout. ttlayout
requests two pieces of in formation, the database name and the table name. In this example, the
database name is TBLTest and the table name is TBL_Persons. This routine should yield the fol-
lowing in formation:

Column #: 1 Length: 50 Type: String Name: FNAME
Column #: 2 Length: 50 Type: String Name: LNAME
Column #: 3 Length: 4 Type: Signed4 Name: AG
Column #: 4 Length: 4 Type: Signed4 Name: ZIP
Column #: 5 Length: 4 Type: Float4 Name: WEIGHT (Float8 for miniSQL)

This is the layout of the TBL_Persons table, and this output verifies that the function TBL_Layout
is working as well as the database initialization scripts.

2. Run the test application ttinsert next. If it is successful, it will report the simple message: “All
Inserts succeeded”. If not, there will be other error messages that need to be addressed.

3. Next, run the test application ttselect. This application will produce the following output if
successful:

In callback: Count is: 1
Field Name: FNAME [7]: JOE
Field Name: LNAME [7]: JONES
Field Name: AGE [4]: 30
Field Name: ZIP [4]: 63100
Field Name: WEIGHT [5]: 150.100

In callback: Count is: 2
Field Name: FNAME [7]: SMELDA
Field Name: LNAME [7]: SMITH
Field Name: AGE [4]: 40
Field Name: ZIP [4]: 63200
Field Name: WEIGHT [5]: 160.200

In callback: Count is: 3
Field Name: FNAME [7]: JOHN
Field Name: LNAME [7]: JONES
Field Name: AGE [4]: 50
Field Name: ZIP [4]: 63300
Field Name: WEIGHT [5]: 170.500

In callback: Count is: 4
Field Name: FNAME [7]: SMITHY
Field Name: LNAME [7]: SMITH
Field Name: AGE [4]: 60
Field Name: ZIP [4]: 63400
Field Name: WEIGHT [5]: 180.250
ALL DONE--Count: 4

4. Run the test application ttupdate to test the update function. If successful, this application will
report the message “Update operation succeeded”. Inspect the last name of the record that has an
age field equal to 50, and the last name should now be “Woodrow”.

5. The delete function is tested with the application ttdelete. If successful, it will report “Delete
operation succeeded”. Inspect the records in the database to ensure that the record containing a zip
code of “63100” is gone.

6. The last function to be tested is a very simplistic unique number generator. The application that
tests this function is ttunique. Running this application should produce the following output:

UN1 iteration: 1 count: 1
20

UN1 iteration: 2 count: 2
UN1 iteration: 3 count: 3
UN1 iteration: 4 count: 4
UN1 iteration: 5 count: 5
UN1 iteration: 6 count: 6
UN1 iteration: 7 count: 7
UN1 iteration: 8 count: 8
UN1 iteration: 9 count: 9
UN2 iteration: 0 count: 0
UN2 iteration: 1 count: 1
UN2 iteration: 2 count: 2
UN2 iteration: 3 count: 3
UN2 iteration: 4 count: 4
UN2 iteration: 5 count: 5
UN2 iteration: 6 count: 6
UN2 iteration: 7 count: 7
UN2 iteration: 8 count: 8
UN2 iteration: 9 count: 9
UN3 iteration: 0 count: 0
UN3 iteration: 1 count: 1
UN3 iteration: 2 count: 2
UN3 iteration: 3 count: 3
UN3 iteration: 4 count: 4
UN3 iteration: 5 count: 5
UN3 iteration: 6 count: 6
UN3 iteration: 7 count: 7
UN3 iteration: 8 count: 8
UN3 iteration: 9 count: 9

5.6.4 Test Queuing Routines

These tests are only available for Unix systems.

This section describes a procedure for testing the queueing mechanism which will be used by the
print server display program. In order to test out the queuing mechanism, a pre-existing utility
will be used that was originally designed for ctndisp. Although this example may not make
much sense at first, successful completion will indicate the the GQ facility is operating properly.

1. Use setenv to set the QUEUE_DIRECTORY environment variable to your current directory (e.g.
setenv QUEUE_DIRECTORY ./). Use the following command to create a new queue of 10
elements where each element is 516 bytes in length (the queue id is 0):

gqinitq 0 10 516
If no error messages appeared, the command succeeded. You can use the ipcs command to check
and make sure that there is one semaphore and one shared memory resource that belongs to your
current login.

2. Put some elements on this queue with the enq_ctndisp command. Use the following commands:
enq_ctndisp 0 image1 dpn1 1 1
enq_ctndisp 0 image2 dpn2 2 2
enq_ctndisp 0 image3 dpn3 3 3

If no error messages appeared, the enqueues were successful.
21

3. Examine the queue with the command pq_ctndisp 0. The ouput should look something like
the following:

<<< HEAD >>>
Queue Element: 1
Image File: image1
DPN id: dpn1
Connection: 1-- Image num: 1

.

.

.
<<< TAIL >>>

4. Try removing the queue with the command gqkillq command:
gqkillq 0 516

The command operates silently unless an error occurred. Use the command ipcs to determine that
the semaphore and shared memory resources once allocated to your login id are now gone.

5.6.5 Test Demonstration Programs

Once you have completed the tests above, you have demonstrated the pieces that are necessary to
run the demonstration programs. There is no detailed procedure to test those programs. The
User’s Guide for CTN Demonstration Applications should provide sufficient information for con-
figuring and running those programs.
22

	CTN Software Installation Guide
	1 Introduction
	2 Machine Specific Details
	2.1 Silicon Graphics workstation, IRIX
	2.2 Linux
	2.3 Win32

	3 Database Issues
	3.1 MiniSQL Installation Notes
	1. You should definitely print out the file .../do...
	2. In general, follow the instructions in the READ...
	3. You should create an msql user, and that user s...
	4. Obtain the msql software from the ftp site list...
	5. Follow directions in README file for the make, ...
	6. Proceed to the directory/msql-version/tar...
	7. The “killer” script should now run.
	8. The “rtest” script should also run.
	9. If all this goes well, this should confirm that...
	10. You will have to make small changes to the scr...

	3.2 Sybase Installation Notes
	3.3 PostgreSQL Installation Notes
	3.4 MS SQL Server Installation Notes

	4 X11/Motif Installation Notes
	4.1 Motif/Linux

	5 Installation Procedure
	5.1 Extract Files from Distribution
	5.1.1 Unix: Extract Files from Distribution
	5.1.2 Windows: Extract Files from Distribution

	5.2 Compilation Environment
	5.2.1 Unix: Compilation Environment
	TABLE 1: Macros Defined for Enabling CTN Features
	TABLE 2: Macros Defined for Controlling the Compil...

	5.2.2 Windows: Compilation Environment
	TABLE 3: Macros Defined for Compiing in a Windows ...

	5.3 Compiling and Installing Libraries
	5.3.1 Unix: Compiling and Installing Libraries
	5.3.2 Windows: Compiling and Installing Libraries
	1. Start the Developer’s Study and selet Open Work...
	2. Select the debug or release version. We have ru...
	3. Select project->settings. Select the C/C++ tab ...
	4. Compile the library. You will get a number of w...

	5.4 Compiling and Installing Applications
	5.4.1 Unix: Compiling and Installing Applications
	5.4.2 Windows: Compiling and Installing Applicatio...

	5.5 Run Time Notes
	5.5.1 Windows: Run Time Notes

	5.6 Test Procedure
	5.6.1 Examine Images
	1. Obtain test images from our ftp site or from th...
	2. Run the program dcm_dump_file on one of the ima...
	3. Run the program dcm_dump_file on one or more of...
	4. Run the program dcm_verify on one of the suppli...
	5. Run the program dcm_verify on one of your image...
	6. This test is only available on Unix systems. Ru...

	5.6.2 Test Network and Snooper Software
	1. Run the program simple_storage which acts as an...
	2. simple_storage has an application title of DICO...
	3. Run this test with one of the example images pr...
	4. Repeat test 3 with one of your own images.
	5. Use send_image to send an image to your SCP of ...
	6. [Note: This test only applies to Solaris 2.x sy...

	5.6.3 Test Database Routines
	1. The success of the table creation can be checke...
	2. Run the test application ttinsert next. If it i...
	3. Next, run the test application ttselect. This a...
	4. Run the test application ttupdate to test the u...
	5. The delete function is tested with the applicat...
	6. The last function to be tested is a very simpli...

	5.6.4 Test Queuing Routines
	1. Use setenv to set the QUEUE_DIRECTORY environme...
	2. Put some elements on this queue with the enq_ct...
	3. Examine the queue with the command pq_ctndisp 0...
	4. Try removing the queue with the command gqkillq...

	5.6.5 Test Demonstration Programs

